Wiki
FlickrLeetcode
  • 💞Artificial Intelligence
    • ⚙️Midjourney vs Stable Diffusion
    • ⚙️Creative QR Codes with ControlNet
      • ⚙️How to generate a QR Code
      • ⚙️Collect prompt
      • ⚙️clip skip
      • ⚙️AUTOMATIC1111
      • ⚙️Edge detection and human pose detection
    • ⚙️Stable Diffusion
    • ⚙️What is 'token' and 'turbo'?
    • ⚙️Today's learning--LangChain
      • ⚙️Prompt
    • ⚙️LLM Parameters Demystified
    • ⚙️What is Cohere playground?
    • ⚙️DALL-E
    • ⚙️How to use AI to learn something that you don't know?
    • ⚙️Diffusers
    • Boosting Algorithms in machine learning, part 1:AdaBoost
  • 💞GitHub
    • ✅How to add a issue of the code with GitHub?
    • ✅How to edit code?
    • ✅How to use GitHub Desktop
    • ✅How to review in GutHub?
  • 💞Lastest concepts for me
    • 🪅Pandas DataFrame
    • 🪅Choosing between loc and iloc
  • 💞Need to remember
    • 🔢An article for leetcode
    • 🉑two types of group work
    • 🍒What is hashtag#?
    • 🐝Week6_APD
    • 🦋API
    • 🎼BFF
  • 💞Python
    • 🐍argument & parameter
    • 🐍"{:.2f}"
    • 🐍Timeit in Python
    • 🐍Today's learning--Pylint
    • 🐍Split and Strip in Python
    • 🐍Getter and Setter in Python
    • 🐍"import json" in Python
    • 🐍Open CSV file in Python
    • 🐍print(f"An error occurred: {e}")
  • Page
  • 🪅command-line
  • 💞DataVisualization
    • 🪅How to choose plot type
  • 💞DataCleaning
    • 🪅Some basic code of data_cleaning
  • 💞Java
    • 🍡difference use between ArrayList and HashMap in Java
    • 🍡ArrayList & LinkedList
    • 🍡assertFalse(App.checkInputNumber(1,0))
      • 🍡HashSet
    • 🍡iterator
    • 🍡Java concept of assignment 1
    • 🍡Week6_Java
    • 🍡serializable
  • 💞Mark something that easily to forget
    • 🙉Mark something
    • 🙉How to edit cover picture from "Flickr" using "URL" in GitBook?
  • 💞VS Code
    • ✖️Install a project in VS Code
    • ✖️What should do after editing the code of one branch?
    • ✖️How to create a branch in VS code?
    • ✖️How to debug?
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Lastest concepts for me

Choosing between loc and iloc

When choosing or transitioning between loc and iloc, there is one "gotcha" worth keeping in mind, which is that the two methods use slightly different indexing schemes.

iloc uses the Python stdlib indexing scheme, where the first element of the range is included and the last one excluded. So 0:10 will select entries 0,...,9. loc, meanwhile, indexes inclusively. So 0:10 will select entries 0,...,10.

Why the change? Remember that loc can index any stdlib type: strings, for example. If we have a DataFrame with index values Apples, ..., Potatoes, ..., and we want to select "all the alphabetical fruit choices between Apples and Potatoes", then it's a heck of a lot more convenient to index df.loc['Apples':'Potatoes'] than it is to index something like df.loc['Apples', 'Potatoet'] (t coming after s in the alphabet).

This is particularly confusing when the DataFrame index is a simple numerical list, e.g. 0,...,1000. In this case df.iloc[0:1000] will return 1000 entries, while df.loc[0:1000] return 1001 of them! To get 1000 elements using iloc, you will need to go one higher and ask for df.iloc[0:1001].

PreviousPandas DataFrameNextAn article for leetcode

Last updated 1 year ago

Was this helpful?

💞
🪅