πͺ Some basic code of data_cleaning
# remove all columns with at least one missing value
sf_permits_with_na_dropped = sf_permits.dropna(axis=1)
# calculate number of dropped columns
cols_in_original_dataset = sf_permits.shape[1]
cols_in_na_dropped = sf_permits_with_na_dropped.shape[1]
dropped_columns = cols_in_original_dataset - cols_in_na_dropped
In the given code, shape
is a method used to get the dimensions of a pandas DataFrame. Specifically, sf_permits.shape[1]
returns the number of columns in the sf_permits
DataFrame.
The axis
parameter in dropna(axis=1)
specifies that the method should drop columns with missing values. In this case, axis=1
means that the method should drop columns with missing values, rather than rows.To summarize:
shape
is a method used to get the dimensions of a pandas DataFrame.sf_permits.shape[1]
returns the number of columns in thesf_permits
DataFrame.axis
is a parameter used in pandas methods to specify whether to operate on rows or columns.dropna(axis=1)
drops columns with missing values.
Last updated
Was this helpful?